If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2-14t=0
a = 4; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·4·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*4}=\frac{0}{8} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*4}=\frac{28}{8} =3+1/2 $
| 6600=120x+100x | | 6n−5n=3 | | 3x+19=6x+13 | | (7/2u+4)+1=-(4/u+2) | | (7/2u+4)+1=(4/u+2) | | 6=1/3x+ | | -5x+15=-3x+3 | | 2x-3=-2x-31 | | 7x+18°=2x | | -2x-16=-8 | | (4x+15)=(13x+7) | | -3x+11=-5x-1 | | 11x-2=6x+3 | | -3x-9=-4x-4 | | 5.12=y/12 | | -7x-11=-5x-9 | | m-12÷m+5-m/2=2m | | -9x+12=-5x-28 | | 9(11-k)=3(3k-5 | | (x+3)/2-(x+8)/6=(2x+3/3-1 | | -3+8x=8x-3 | | x+5=-2x+11 | | (3x+4)(6x+5)=464 | | Y=-5p+650 | | (n+1)(n+2)(n+3)(n+4)= | | 4x-15=-2x-39 | | 44+-0,5y+y=57 | | -x-8=3x-48 | | 2x×X+5=23 | | -6x-6=-3x-21 | | 5x-13=6x-11 | | 4x^2+7x+39=0 |